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Abstract 

Assuming that the observations are from an exponential family we obtain the asymptotic 
distribution of  the maximum likelihood estimator of the time of  change. We also prove that the 
maximum likelihood ratio test is asymptotically normal, i f  there is a change in the parameters 
at an unknown time. 
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1. Introduction and results 

Let X I , X  2 . . . . .  X n be independent random vectors in ~m. We assume that 
X1, X2 . . . . .  X. have probability densities with respect to v, a a-finite measure and the 
density of Xi is in the exponential form 

f ( x ;  Oi) = exp(T(x)O~i + S ( x )  - A ( O i ) ) I { x  E C}, 

where x = ( x  1 . . . . .  Xm),Oi = (Oi, l . . . . .  Oi, d) E O C _ • a , T  = (Tl . . . . .  Ta) and CC_~ m. 
Several authors studied the detection of changes in the parameters of random sequences 
(cf. the review papers of Cs6rg6 and Horvfith (1988) and Zacks (1991 )). In the simplest 
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case we want to test the null hypothesis o f  'no change',  i.e., 

Ho " 0 1  = 0 2  . . . . .  On 

against a 'one change' alternative, i.e., 

H A • there is an integer k*, 1 <~k* < n such that Ol . . . . .  Ok* ~ 0k*+l = 

. . .  z O n  " 

We can use the maximum likelihood method to test Ho against HA. It is easy to 

see that the generalized likelihood ratio is 

sup0 l-Ii~i<,k f (X i ;O)supo  [Ik+l<,i<<.n f ( X i ; O )  
Ak = , (1.1) 

suP0 I l l  <~i<~n f (Xi ;O)  

if k = k* is known. Since k* is unknown, we reject Ho for large values of  

Qn = max logAk). (1.2) l~<k<n (2 

Assuming some regularity conditions on the function A(O), we get a simpler expression 

for Ak. Let A'(O) = (-~o,A(O) . . . . .  ~-~,A(O)),O = (O1 . . . . .  Oa). We assume that 

C.1. invA'(O), the unique inverse o f  A'(O) exists Jor all 0 c 0 .  

I f  C.1 holds, then the log likelihood ratio can be written as 

logAk = kH(Bk)  + (n - k ) H ( B ~ )  - nH(B , ) ,  (1.3) 

where 

H ( x )  = ( invA' (x) )x  T - A(invA'(x)) ,  (1.4) 

and 

1 
Bk = ~  Z T (X i )  (1.5) 

I <~i<~k 

1 
B~, - n _  k ~ T(Xi) .  (1.6) 

k + l  <~i<~n 

Restricting the more general case in Gombay and Horwith (1994) to the exponential 
family, we get the limit distribution of  Qn under Ho. Let a(t) = (2 logt)  1/2 and bd(t) = 

2 log t + ~- log log t -- log F(d/2) ,  where F( t )  = f o  y t -  I e - y  dy is the Gamma function. 

T h e o r e m  1.1. Assume that Ho holds, and the true value o f  the parameter is 0o. In 
addition to C.1, assume that there is an open interval 690 c O C •a containing Oo 
such that A(O) has continuous derivatives up to the third order, i f  0 E 0o and 
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t~ 2 
A"(O) = { ~ A ( 0 ) ,  1 <~i,j<~d} is a positive definite matrix, i f  O E 6)0. Then, 

l i r n  P{a(log n)Qln/2 <~ t + bd(lOg n)} = exp(-Ze  - t )  

for all t. 

In this paper we are interested in the distribution of Qn under the alternative. So far 

only some special cases of Qn have been considered under HA in the parametric frame- 
work (cf. Yao and Davis, 1984; Haccou et al., 1988). Ferger (1994a, b, c, d) studied the 

behaviour of  some tests derived from U-statistics under the null as well as the alter- 
native hypothesis without assuming the form of the underlying densities. Szyszkowicz 

(1991a, b, c) obtained the weak convergence of empirical and related processes under 
contiguous alternatives which include the 'small disorder' as a possible change-point 
alternative. 

I f  Ho does not hold, we may want to estimate the time of change. The maximum 
likelihood estimator of k*, the time of change, is defined by 

= min{k : Q, = 21ogAk}. (1.7) 

Bhattacharya (1987) defines a similar estimator which maximizes the quadratic func- 

tional of the partial sums Bk - B ~  over a restricted range. Estimators which are defined 
as the time when a random process reaches its maximum have also been studied by 
Yao (1987), Cs6rg6 and Horvfith (1987), Dfimbgen (1991), Ferger and Stute (1992), 
Ferger (1994c, e) and Antoch et al. (1995). Consider first the behavior of k under Ho. 

Theorem 1.2. I f  the conditions of Theorem 1.1 hold, then 

n ~ ~ o ,  

l where P{~o -- 0} = P{~o = l} = 3' 

Proof. Gombay and Horvfith (1994) showed that 

lim P{k<~n/logn or k>~n-  n/logn} = 1 
n - ~  o<3 

and since {Ak, l<~k < n} ~ {A,-k+l , l~<k < n} under Ho, we get immediately 
Theorem 1.2. [] 

Now we consider the behaviour of Qn and k under the alternative. We say that the 
change occurs early, if  k*/n ---* 0 and the change is small, if the difference between the 
parameters before and after the change goes to zero, as n ---+ 2 .  We have different types 
of limit results, depending on whether we have small changes or the change occurs 
immediately after the first few observations. The results will be given in Theorems 
1.3-1.6. Let 0~A 1) and 0~ 2) be the values of  the parameter before and after the change. 
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The size o f  the change is A, where A 2 (0 (l) (2) (1) 0(2))T. = - 0  A )(0 A - We consider the 
following four cases: 

F . I .  k* = k*(n), 0 < limn__.~k*/n = 2 < 1 and 0{AI),0~a 2) are f ixed elements o f  the 
interior o f  6). 

F.2. k* = k*(n), 0 < limn--.ook*(n)/n = 2 < 1, O] l) = O]l)(n) -+ OA,O] 2) = 0~AZ)(n) ---+ 

OA, as n --* c~, where OA is in the interior o f  O and 

lim nA2(n) 
- e ~ .  ( 1 . 8 )  

n--* ~ log log n 

tl(I) a(2) are f ixed elements o f  the interior o f  F.3. k* = k*(n), l imn_.~ k*(n)/n = O, ~A ,~A 
69 and 

k*(n) 
lim - -  - -  ~ x D .  ( 1 . 9 )  

n~o~ log log n 

F.4. k* = k*(n), limn__.o~k*(n)/n = O, O{A l) = O~A')(n) ~ 0a,0~A 2) = O~A2)(n) --* 0~, as 
n -+ c~, where OA is in the interior o f  6) and 

lim k*(n)A2 
- -  - c ~ .  ( 1 . 1 0 )  

n--.o~ log log n 

Next we define ~, = At(0~A')),~2 = A'(0{A 2)) and ~A = A'(OA). Let {Y/, i  < 0} be 

independent, identically distributed random vectors (i.i.d.r.v. 's) with density function 

f ( x ;  0~A l)) (with respect to v) and similarly, { Yi, i > 0} are i.i.d.r.v.'s with density func- 

tion f(x;O]2)). We assume also, that the two sequences {Yi, i < 0} and {Yi, i > 0} 
are independent. N o w  we define 

z ,  = 

( H t ( ' c 2 ) - H t ( Z l ) )  k<~i<~ l ( T ( Y i ) - ' ~ l )  T 

- k { H ( ~ 2 )  - H('rl  ) + H t ( ~ 2 ) ( ' ~ l  - "152) T } 

0 

( H ' O r l ) - H ' ( ' c 2 ) ) l < ~ i < ~ k ( T ( Y i ) - ~ 2 )  

+k{H( 'c l  ) - H('c2) q- H'(~1 )('c2 - ~l )T}, 

Let 

i f k  < 0, 

i f k  = 0 ,  

if  k >  0. 

I ~ * = k * H O r l ) + ( n - k * ) H O r 2 ) - n H  l r l + n  n "I72 

(1.11) 

(1.12) 
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and 

(7~ = )~(Ht(*l) - Ht(z~*l + (1 - )~)*2))A't(O(I))(Ht(*I) 

- H ' ( 2 * !  + (1 - 2 ) ,2 ) )  T + (1 - 2 ) ( H ' ( , 2 )  - H'(2~1 + (1 - 2)*2)) 

X A t ' ( 0  ( 2 ) ) ( H t ( * 2 )  - -  Ht(~.*l 4- ( 1 - '~) '2  ))T. 

As usual,  N(# ,  a 2) denotes a normal  r.v. with parameters # and a 2. Let 

(1.13) 

¢-  = { ,  : ,  = A'(O),O E 6)} 

and 

J - * ( * l ' * 2 ;  ~') = {* "  II* -- (S*I 4- (1 -- S)'t'2)H ~ Y  for s o m e  0~<s~< 1}, 

where [Ixl] 2 = x x  T. 

Theo rem 1.3. Assume that HA, F.1, C.1 hold, and 

C.2. there is s > 0 such that H '"  exists and H "  is positive definite on 3T*(,1, 

C.3 .  

C.4. 

and 

C.5. 

*2;s) ,  
Ht(*2)(*l  - ,2 )  w 4- H(*2)  - H(*I  ) < 0, 

H ' (* l  )(*2 - *1 )T 4- H(*I ) - H(*2)  < 0, 

sup~<,, ,<l-c(H(s*l  + (1 - s)*2) -- sH(*l ) -- (1 -- s)H(*2))  < 0 
1 f o r  all O < s < 3" 

Then, 

_ ---____+ ~ 

where 

and 

(1.14) 

 :inf{k  (1.15) 

n I/2(Q,, _ 2#*)  ~ N(0,4cr~). (1.16) 

Next we consider  the case when  F.2 holds. 

Let 6 2 = (*l - ' 2 ) ( ' 1  - ' 2 )  T, 

(* l (n )  ~ ~2 ~n ~ ~ H ~ A  ~ l ~n ~ ~ ~2 ~n ~ ~T 
~2 = lira 

,--+oo (*1 (n)  - *2(n))(*l (n)  - *2(n))  T 

and 

(1.17) 

~ = 2 ( 1  - 2)~] .  (1 .18)  
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We also define 

[ ~Aw,(-t)- ~21tl if  t < 0, 

W*(t) = 0 if t = 0, 

6AW2(t)- ½~21tl if t > 0, 

(1.19) 

where ( W, (t), t/> 0} and { W2(t), t >10} are independent Wiener processes. 

Theorem 1.4. Assume that HA, F.2, C. 1 hold, and 

C.6. H"'  exists and H"( z )  is positive definite in a neighbourhood of  ¢A = H'(OA). 

Then, 

6 2 ( k -  k*) ~ r/, (1.20) 

where 

q = inf{t • W*(t) = sup W*(s)} (1.21) 

and 

(nf2)-l /2(Q, - 2#*) ~ ,  N(0,4tr22). (1.22) 

Let 

tr~ = (H'(~] ) - Ht('c2 ) )Att(O (l))(H'('cl ) - Ht(~2 ))T. (1.23) 

Theorem 1.5. Assume that HA, F.3, C. 1-C.5 hold. Then, 

- k *  ~ ,  ~, (1.24) 

where ~ is defined by (1.15) and 

(k*)-l /2(Q n - Z/t*) ~ X(0,4cr32). (1.25) 

Our last theorem considers the case when we have a small and early change. 

Theorem 1.6. Assume that HA, F.3, C.1 and C.6 hold. Then, 
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where ~ is def ined by (1.21) and 

( k * f 2 ) - U 2 ( Q n  - 2~u*) ~ U(O, 4a42), 

with a 2 = a2A . 

It is clear from Theorem 1 and Theorems 1.2-1.6, that the likelihood ratio test is 
consistent against the alternative if one of the conditions F.1-F.4 hold. The proofs of 
Theorems 1.2-1.6 are given in Section 3. In the following section we consider some 
examples. 

2. Some examples 

Let 

W l ( - t ) -  ½1t[ if t < 0, 

W(t) = 0 if t = 0, 

Wz(t ) -  ½1t] if t > 0, 

where W1 and W2 are independent Wiener processes. We also define 

~ = i n f { t ' f f ' ( t ) = - ~ < s < ~ s u p  ff'(s)}. (2.1) 

Bhattacharya and Brockwell (1976) (of. also Yao, 1987 and Ferger, 1994c) proved 
that the density function of ~ is 

g(x )  = 3 exp(Ixl){1 ~(3 IXI 1/2 - ~ )} - ½(1 - q}(½]x]l/2)), - e~  < x < oo, (2.2) 

where • denotes the standard normal distribution function and the distribution function 
is given by 

3 x 3 1/2 G(X) = l + (2Tc)-l/2xl/Ze -x/8 - ½(x + 5)q~(-½x 1/2) Jr- ~e q~(-~x  ), 

if x > 0 and G ( x )  = 1 - G ( - x )  if x~<0. Using Theorems 1.4 and 1.6 we can get 
distribution free limit distributions. 

Corollary 2.1. I f  the condit ions o f  Theorem 1.4 or Theorem 1.6 are satisfied, then 

we have 

(~1 - ~2)H"(~A)(~I -- ~2)T(k -- k*) ~,  ~, (2.3) 

where ~ is def ined in (2.1) and its densi ty  is given in (2.2). 

Proof. It follows immediately from Theorems 1.4 and 1.6 and from the scale trans- 
formation of Wiener processes. [] 
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Of course, we cannot use (2.3) to construct confidence intervals for k*, since 
('el -"~2)Htt(~A)(~l -"~2) T, the size of  the jump is unknown. However, it can be 

estimated from the observations. 

Corollary 2.2. I f  the conditions o f  Theorem 1.4 or Theorem 1.6 are satisfied, then 

(B~ - B~)H"(B, ) (B~ - B~)T(k - k*) ~ ~, (2.4) 

where "0 is defined in (2.1) and its density is given in (2.2). 

Proof.  It follows from the law of large numbers that 

P 
Bn ~ IA, ( 2 . 5 )  

i f  the conditions of  Theorem 1.4 or Theorem 1.6 hold. By Slutsky's lemma and (2.3) 
it is enough to show that 

(B~ - B~)H"(B, ) (B~ - B~) T e 1. (2.6) 

(~ - T2 ) H " ( ~ A  )(~1 - ~ 2 ) v  

By the law of  the iterated logarithm we have 

IIB~ - ~1 ]1 = Op((log log k * / k * ) t / 2 )  ( 2 . 7 )  

and 

] ]B~ - 32 II = Op((log log(n - k * ) / ( n  - k* ))1/2). ( 2 . 8 )  

NOW the conditions of  Theorems 1.4 and 1.6 imply that 

lim log logk* = 0 (2.9) 
, , ~ o o  k * ( ' ~  I - ~ 2 ) H t t ( T A  )(~1 - -  3 2 ) T  

and similarly 

lim log log(n - k* ) (2.10) 
, ~  (n - k* )(zl - z2)H"(zA)(zl  -- z2)T = 0 

It is clear that (2.6) follows from (2.7)-(2.10).  [] 

Next we consider a few special cases of  the results in Section 1. 

Example  2.1 (Normal observations, chanoe in the mean with a known, constant vari- 
ance). The density function is 

f ( t ;O)  = exp °" 2 2~ 2 2~r2 log(2rc~ 2) , 

and therefore r(t) = t /~2,H(t)  = t2~2/2 and A(O) = 02/(2~2). Elementary calculations 
yield that A"(O) = 1/~ 2, H " ( t )  = a 2  ~ = 2(1 - 2)(0~ ') - 0(A2))2/~ 2, ~ = 2(1 - 2)~ 2, 
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a~ = (0(l) - 0(AZ))z/a 2 and ,2  = ,2 = a2. Also, kl* - 2~1 k*(n-k')[[l(') - ~ "  t~A 0(A2)) 2.  If 

{ N / , - oo  < i < oc} is a sequence of  i.i.d, standard normal r.v.'s, then 

{zk,-oc < k < oc} ~ A(~) oc}, = { z j  , - o c < k <  

where 

Zk (1) = 

0(2)-- 0(I) Z Ni ~r- k [ 0 ( l )  -- 0(2)) 2 if k < 0, 
a 2a 2 t A 

k<~i<~-I 

0(A1)--0(2) Z Ni _ k (0(1) _ 0  A(2) 2) 
cr 2cr2 t A 

1 ~<i ~<k 

i f k  = 0 ,  

if k >  0. 

Hence the limit distribution of  k depends on 0{) ) - 0! 2) only. 

Example 2.2. (Exponential observations). The density is given by 

f ( t ;  0) = e x p ( - t 0  + log O)l{t >1 0}, 

and therefore T(t) = - t  (t>,O),H(x) = - 1  - l o g ( - x )  (x < 0) and A(O) = - l o g 0 .  
Thus we get a~ = 2(1 - 2)(0(i) - 0(AZ))2/(20(A 2) + (1 -- 2)0())) 2, a 2 = 2(1 -- )00A 2, a 2 = 

(2) (1) 2 (1 - 0 A 10 A ) ,  cr 2 = a42 = 02 and #* = k* log 0() ) + (n - k*)log 0(a 2) + nlog(2/0( ')  + 
( 1  - 2)/0(2)). If {Y,*,-oc < i < oc} is a sequence of  i.i.d, exponential r.v.'s with 

EYi* = I and 

0(A2)'/ Z ( Y i * - 1 ) - k  1 + l o g  012) 0(2)'/ ( <',) 
2~2) = 0 

O~A')'~ Z (Y"* l ) + k  l + l o g  0(2, 0(2---7) 1 0(2) ) , . < , . < - ,  

if  k < 0, 

i f k  = 0 ,  

if k >  0, 

then we have 

{ / k , - o o  </~ < oo} -<~< .a(2) oo}. = / z /  , - o o < k <  

The limit distribution of  Qn and k depend on A a 0 (1)/0 (2) only. 

Example 2.3. (Poisson observations). The probability mass function in the natural 
form is 

f ( t ;  0) = exp(t0 - e ° - log t!)l{t is non-negative integer} 
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and therefore T ( t ) =  t,A(O)= e ° and H ( x ) =  x ( l o g x -  1). Some calculations give 

a~ = ). { 0(a ' ) - log(2 exp(0(A 1) ) + ( 1 -- 2) exp(0(A2))) } exp(0(A 1) ) 

+(1 -- 2){0(A 2) -- log(2 exp(0(A l)) + (1 -- 2)exp(O(A2)))} exp(0(A2)), 

a~ = 2(1 - 2) exp(-0A ), a~ = (0 ( ' ) -  0(A2))2 exp(0(al)), 

rr~ = a4 2 = exp(-OA) 

/A* ~ (k*0 (l) exp(0 (1)) @ (n - k*)0(A 2) exp(0(A 2)) -- (k* ¢xp(0(A 1)) 

- -  exp(0 (2)) . 
n 

Example  2.4 (Normal random vectors, change in the mean vector with a known, 
constant covariance matrix). In this case m = d and the density is 

f i x ;  0) = exp(xZ ' - J0  ~ - ½0S-10 f - ½xZ-lx  T - log((2zom/2det Z)), 

where Z" is the covariance matrix. Hence T(x) = xS  - l ,  H(x)  = lXZXT and A(O) = 
½0S-10 T, and we get a~ 2(1 2)(0(a I) (2) -1 (') . = --  --  0 A ) S  ( 0  A --  0(2)) T, 

~2 : lim (0(A1)--0(A2))2;--1(0(A')--0(A2))T 

. - ~  I1(O~' > - 0 ~ 2 ) ) S  - ,  112 

rr2 = -^(1) tg2) r - l t t~( t )  C ~  - ,,~ ) , -  , ~  - 012 ) )  T, 

- 

d = G 
p,  1 k*(n - k*)( 0 

= -  - 0  A ) . 2 n ( 1 ) -  0(A2))S--I(0(1) (2) T 

Similarly to Example 2.1, the power function depends on 0(a 1 ) -  O(A 2). 

We note that Hinkley (1970) and Hinkley and Hinkley (1970) suggested the max- 

imum likelihood estimator for k*. They also obtained a recursive numerical method 
to approximate the distribution of  k. However, the computations are too involved to 
compute the distribution of  k for large sample sizes. 

We checked the accuracy of  the limit theorems in Theorems 1.3-1.6 by Monte Carlo 
simulations for the cases of  Examples 2.1-2.4. All simulations were run 2000 times. We 
used the sample sizes n = 50, 100 and 500 and changes at k* = n2, 2 --- 0.1,0.2 . . . . .  0.5 
for various values of  the parameters before and after the changes. It turned out that 
the results in (1.16), (1.22), (1.25) and (1.27) were very accurate if  p* of  (1.12) was 
large enough and in this case the limit theorems and the Monte Carlo simulations gave 
very close values, and the power was above 0.9. I f  the limit theorems gave different 
values from the Monte Carlo simulations for the power functions, the limits always 
underestimated the true power. Serious difference between the true and the asymptotic 
powers occurred only if p* is small and the power was less than 0.7. 
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We also checked the accuracy of  the confidence intervals. We observed that the 

location of  the time of  change does not have a great effect on the confidence in- 

terval and the size of  the jump was the important factor. It is interesting to note 
that Corollary 2.1 gave shorter confidence intervals than the results in (1.15) and 

(1.24). 

3.  P r o o f s  o f  T h e o r e m s  1 . 3 - 1 . 6  

First we obtain bounds for the difference between k and k*. Then we study the 
asymptotics of  log Ak in a neighbourhood of  k which yield the limit distributions of  

- k *  and log Ai. Let 

IAk = 

['k* - k  
kH(~l ) + (n - k ) H  ~ ~ _ k  Zl 

k* k - k *  ) 
kH --£-~1 + ~ 2  

n - k* "~ 
+ n - _ ~ - z 2 )  - k * H ( z l )  - (n - k*)H(z2)  

t 

.< * if l < . k . < k  , 

+ (n - k ) H ( z 2 )  - k*H(~l ) - (n - k * ) H ( z 2 )  

if k* < k<~n, 

and 

Vk = l o g A k - l o g A t * ,  l ~ k <  n. 

L e m m a  3.1. I f  the condit ions o f  Theorem 1.3 are satisfied, then 

Ik - k*l = OF(l). (3.1) 

Proof.  Let 1-%<k-.~k . The Taylor formula gives 

Pk = (k  - k * ) H ( z l  ) + (k* - k)H(~:2) + (k* - k)H'(I '2)( 'ci - I'2) T 

1 (k* - k) 2 
-{ (*1 -- "[2)HH( "[* )('~1 - -  "t'2) T,  

2 n - k  

k'--k ,-k* and "['2. By the continuity of  where z* is on the interval connecting n"-~Igl -~- ~ ' [ ' 2  

H "  we can find a constant CI > 0 such that 

1 (k* - k )  2 

2 n - k  

k* k) 2 
- - I ( ' r l  - ~'2)Ht/(**)(gl - '~2)v[ ~<C1 ( - 

n - k  
(3.2) 
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for all 1 ~ k  ~<k*. We can choose a small enough ~ such that 

#k ~< ½(k* - k){H'( 'r2)( 'r l  -- "C2) T q- H('C2) - H('cl )}, 

if n~ ~<k ~<k*. It is easy to see that 

k* - k  ( #k = ( n - k )  H \ ~ ' c l +  

~ (n - k)  sup 
(k* -n:O/(n-ncO<~t<~k*/n 

(3.3) 

n - k *  "~ k * - k  n - k *  ] 
n - k  - g 2 )  - n _ - k - H ( Z ' l )  n ~ H ( ~ ' 2 ) }  

{ a ( t * l  + (1 - t)'r2) - t H ( * l )  -- (1 -- t)H('c2)}, 

(3.4) 

if  l<~k<~n~. By (3.3) and (3.4) we can find a constant C2 < 0 such that 

# k < ~ C 2 ( k * - k ) ,  if l<~k<~k*. (3.5) 

A three-term Taylor expansion gives 

k H ( B k )  - kH(~l  ) - ( k * H ( B k .  ) - k * H ( ~  ))  

= kH' (~ l  ) (B ,  - ~l )T _ k*H' (~ l  )(gk* - ~1 )Y 

k 
~ ( B k .  - ¢1 )H"(¢I  )(Bk* ¢1 )T + ~ ( B k  - ¢1 ) H " ( x l  ) (Bk - 1:1 ) T  _ _ 

+ R k , ~ ,  (3.6) 

and by the law of  the iterated logarithm we have 

max [Rk, l[ = Oe(1). (3.7) 
I <~k<~k* 

I Let ~ < ~ < l. Using again the law of  the iterated logarithm we get 

max [ k H ' ( ~ l ) ( B k - ~ l ) Y - k * H ' ( z l ) ( B k . - ~ j ) T [ / ( k * - k ) ~ = O p ( 1 )  (3.8) 
1 ~<k ~<k* 

and similar arguments yield 

max [k(Bk - ~1 )H"0rl  )(Bk - zl )Y 
l<~k<~k* 

- k * ( B k *  - ~1 )Htt('lg¿ )(Bk* -- "~1 )T]/( k* -- k )  :~ 

= Op(l) .  (3.9) 
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As in (3.6) we have 

{ n k.)} 
(n-k) H(B;) -Ht~_k '~ l  + n--~-'~2 -(n-k*){H(B~<. -H('c2)} 

(k*-k . - k *  ~ ( l<*-k . -k* "; 
: <. - , ) , , '  t ._--~-.. + ~-_-r,~ 7 , = ; -  ._ , . . -  ._,,~7 

x B;  n --k ~1 n - - k  ~2 - (n - k*)H'(¢2I(B;.  - ~'2) T 

#1 --  k*  
2 ( B ; .  - "c2)HtI( '~2)(B;.  - 1!"2) T q- Rk, 2 ( 3 . 1 0 )  

and 

max IRk, el = Op(1). (3.11) 
l<~k<~k* 

Next we write 

Rk,3 = (n -- k )H '  t ~ _ k  ~l + n - - ~ 2  B;  --~ln --  k --rZn - k 

- (n - k*)H'(~z)(B; .  - "c2) T 

k* <i<~n 

-i-Hi n-~--~--1~l-P- 111 - k "-'i:2 Z ( T ( X i ) -  I~I)T 
k<i<~k* 

k* - k 
- -  ~ - - ~  (~'1 -- '~2)HtI("~*) Z ( T ( X i ) - ' ~ 2 ) T  

k* < i ~ n  

, I / k * - k  n - k *  ) )r. 

k<i~k* 

(3.12) 

Using again the law of  the iterated logari thm we obtain for all ½ < c~ < 1 that 

max ]Rk,3[/(k* - k)  ~ = Op(1).  (3.13) 
1 ~<k ~<k* 
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Similar arguments yield 

(s~ k* - k max [ ( n -  k) * - ~, 
1 <~k<~k* n -- k 

r - l ,  , - k *  
× S ; -  n _ k * l -  ; - ~ 2 )  - 
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n - k *  "~ ,, [ ' k *  - k n - k *  "~ 

(n - k* )(B~. - 1~ 2 ) s n ( * 2  ) 

x ( B ~ .  - z 2 ) T l / ( k  * - k )  ~' 

= O p ( 1 )  

1 i f ~ < ~ < l .  
It follows from (3.5) and (3.6)-(3.14) that 

lim l imsupP / max Vk > - M } = 0  
K---*~ n ~ ~ l <~k <~k* K 

for all M > 0. By (3.15) we get 

lim l imsupP{k < k * - K }  = 0, 
K---~ v~  n - - - * ~  

and similarly one can obtain 

lira l imsupP{k > k* + K }  = 0. 
K - - + ~  n ---* (x~ 

Now Lemma 3.1 follows from (3.16) and (3.17). [] 

Lemma 3.2. If  the conditions of Theorem 1.4 are satisfied, then 

62lk - k*l = o,,(1). 

Proof. Let 1 <~k<~k*. A three-term Taylor expansion gives 

/~k = ( k * - k )  g ~1+ n- -~-~2)  - H ( ~ I )  

+ ( n _ k . ) { H f k * - k  n - k *  ' )}  

n - -  k *  
= ( k *  - k ) H t ( ' c  I ) - - - - - - T ( ~ 2  - 151 ) T  

n - - K  

k* - k / n  - k * ¥  )y 
+ ~ < n T - - ~ )  ('r2 - 't', )H"( ' t ' ,  )(~2 - 'r I 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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k k * -  
+ (n - k* )Ht(*2 ) n - ~ ( *  1 -- ' 2  )T 

n - k *  ( k* - k'~2(,~2 )T 
+ - ' - - - ~  - -  121 ) H n ( ' t ' 2 ) ( * 2  --  't'l + Rk4 (3.18) 

~ k n - k ]  

max IRk,4]/( ( k * - k ) ( n  - k * ) 6 2 )  = o ( 1 ) .  (3.19) 

By  the mean value theorem, (3.18) and (3.19) we can find a constant C3 < 0 such 

that 

C3 (k* - k)(n /2k - k * ) 6 2  if  l<~k<~k*. (3.20) 
n - k  

It is easy to see that 

and 

Vk - pk = kH'(*l )(Bk - *l )T _ k*H' (* l  )(Bk* - "el )T 

+ ( n  - k ) H '  ~ _ k , 1  + n T ~ - *  2 B ;  n-------~I:l *2 
- -  n - k  

k 
-- (n -- k*)H'(*2)(B,~. - .2)  w + ~(Bk - *1 )H"(*I  )(Bk - *1 )T 

k ,  

2 
- --(Bk* - *l )H"(*l )(Bk* - * 1  ) T  

FI -- k* 
2 (B~. - *2)H"(*2)(B~* - *2)T 

n - k [B*  k* - k n - k* 
+ 2 ~ k n ~ t l  - n - k  

(B~ k * - k  n-k* )T 
x - -  - - r 2  + Rk 5 

n - k  ~l n - k  

IRk,51 ~ c{kllBk - *1 II 3 + k* [IBk. - ,1 II 3 + (n - k*)IIBL - *2ll 3 

(3.21) 

k) s; 3} k* - k n - k* 

The law of  the iterated logarithm yields 

max k3/2llBk -- "r1113 /(log log k )3/2 = Op(1),  
1 ~<k ~<k* 

(3.22) 

(3.23) 
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and therefore by (3.20) we have 

l imsupP~ max kHBk--"~l]]3/]~k] > C~ = 0  (3.24) lim 
K---+c~c2 n--+~c~ ( 1 <~k <~k* --K/'~ 2 J 

for all e > 0. Using similar arguments we can establish that for all ¢ > 0 

lim l imsupP / max IRk,51/l#kl > e~ =0 .  (3.25) 
K---+oc n---+cx~ ( l <~k <~k*--K/g 2 J 

Writing 

kH'(~l )(Bk - ~l )T _ k*H'(~] )(Bk* -- ~l )T 

+ ( n  - k ) g  ~ n _ - - - 2 T ~  + n ; ~-~2 B ;  - n - k ~ - - - ~ 2 n _ k  

- (n  - k* ) H ' ( ~ 2 ) ( B ; .  - ~2)T 

: ~H ~ T I  -]- ~:~-'1~ 2 -- H"(I'I) E ( T ( X i ) - -  ~'I)T 
k<i<~k* 

-}- H/~n_---7k-'~l-}- n--TT2) -H/('t'2) Z ( T ( X " ) - * 2 ) T  
k* <i<~n 

= Rk, 6 q- Rk,  7, (3.26) 

we get 

max ]Rk,6]/( n - k *  *-k) loglog(k*-k))~/2)=Op(1)  (3.27) 1 ~k ~k* ~ ( ( k  

and by the central limit theorem we have 

) max IRk,71~ ~(n-  k*) j/2 = Oe(1). (3.28) 1 ~<k ~<k* 

Hence by (1.8) and (3.20) we have 

lim l i m s u p P (  m a x  ]Rk6q-RkT]/[#k] > e } = O  (3.29) 
K ~ c ~  n ~  ~ l<~k<~k* K/6 2 ' 

for a l lc  > 0. 
By the law of the iterated logarithm we have 

max Ik(Bk -- ~1 )H"(~I )(Bk - "cl )r[ = Op(log log k*) (3.30) 
I ~<k ~<k* 

and (1.8) implies 

(n - k) log logn 
lim max = 0 (3.3 I) 

n ~ o c  I <~k <~n ( k *  --  k )(n - k*)62 
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for all 0 < ~ < 2. Thus by (3.20) we have 

59 

max Ik(Bk - ~ ) H ' ( ~ ,  )(Bk - ~,)Tl/l~kl = Op(1) ,  (3.32) 
1 <~k<~c~n 

if  0 < ~ < 2. Similarly, the central limit theorem, (1.8) and (3.20) yield that for all 

0 < c ~ < 2  

max [k*(Bk. - z l )H" (Z l ) (Bk .  -- ~t)TI/l~kl = Op(1). (3.33) 
1 ~ k  ~<:m 

Using again the law of  the iterated logarithm and the central limit theorem we 

obtain 

m a x  [{kl/2(Bk -- ~1 ) -- k* l /2(Bk  * - "tl )}Htt( 'gl  )k l /2 (Bk  - 'tl )T I/l~kl 
7.n <~k <~k* -K/6 2 

= Op(1) max (n - k ) ( l o g l o g k )  1/2 { ) 

k<i<~k* 

( k * - k )  ( ~ ' ~ 1 / 2  } 
-~ k l / ~ . ~ k ) l / 2  ~ k . / I  Z ( T ( X i ) - ' [ l )  

I <~i<~k* 

(n - k)( log log k)  1/2 
= Ot,( 1 ) max 

~n~k<~k*-X/62 (k* - k)(n - k*)62 

1 ) ( l°g log K N~ 1/2 
Oe( (3.34) 

where Op(1) does not depend on K. Putting together (3.32), (3.33) and (3.34) we 
obtain 

f 
l im l im s u p P ~  max Ik(Bk -- '~1 )Ht'( ' t ' l  ) (Bk  -- 'tl )T 

K~cx~ n---*oc~ [ 1 <~k~k*-K/62 

- k * ( B k .  - ~'1 )Ht'('I:I ) (Bk .  -- '1:1 )~l/l~kl > c} = 0 (3.35) 
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for all e > 0. Similarly to (3.35) one can prove that 

(n ( k* - k lim limsupP max - k )  B; 

- - n _ k ' C 2 ) t l  ~ _ k ' [ l q -  n -~- ' c2  B; 

- - ( t l  - -  k * ) ( ~ .  - 7d2)Ht '(Td2)(B;.  --  "11"2) w / ] m l  > 

~T  
k* - k  n - k *  V 
n - ~  ~1 - -n-k  "~2 ) 

= 0  

for all c > 0. By (3.21), (3.25), (3.29), (3.35) and (3.36) we have 

lim limsupP / max [Vk--#k[/l#k[ > e}  
K---+o~ n--,cx~ ~ l<~k<~k*-K/~ 2 

for all ¢ > 0, which by (3.20) immediately implies 

lim limsupP{k < k* - K/62} = O. 
K ---+ cx~ n---* oc 

= 0  

Similar arguments yield 

lim lim supP{k > k* q - K / 6  2}  = O, 
K ----~ oo n ---~ cx) 

which also completes the proof of Lemma 3.2. [] 

(3.36) 

(3.37) 

(3.38) 

Lemma 3.3. I f  the conditions of  Theorem 1.5 are satisfied, then 

I ~ -  k* I = Op(1) .  

Proof. First we assume that 1 <.Gk<<.k*. The Taylor formula yields 

(3.39) 

1 (k* - k )2 .  
= (k* - k)H'('[2)('[l - -  ~ 2 )  T q -  ~ ~ -  t~'l -- ~2)Hn(~*)(~l - -  ~ 2 )  T.  

k*-k 0, as n ~ cx~, by C.3 we can find a constant C4 < 0 such Since max~k<k. ~ 
that 

/~k~<C4(k*-k) if l~k<.k* .  (3.40) 
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As in the proof of  Lemma 3.1. (3.40) implies that 

lim l i m s u p P {  max V k > - M } = 0  (3.41) 
K--~cx~ n--~.~ l <~k <~k*--K 

for all M > 0. 
Since k*/n ---, O, we need different estimates for maxk.+x~<k<n Vk. We show that 

lim l imsupP  / max IVk--pkl/l#kl > e } = 0  (3.42) 
K---+ cxz n----~ c~ ~ k * + K <~ k < n 

for all c > 0. Let k* ~<k < n. Using again the Taylor formula we get 

#k = k  H - - ~ - ' r 1 + - - ~ 2  

= (k* - k){H'('c~ )(~j - 172) T q- H('r2) - H('rl )} 

+~ ~ - -T- )  (~,- ~2)//"(~*)(~,- ~2)y, 

and therefore we can find two constants fl > 1 and C5 < 0 such that 

#k <. C s ( k - k * )  i f  k* <~k<~flk*. (3.43) 

Similarly to (3.6)-(3.14) one can show that 

max IVk -- #kl/(k - k*) ~ = Oe(1) (3.44) 
k* <~k<~flk* 

1 for all y < ~ < 1. Now (3.43) and (3.44) yield 

lim l i m s u p P ~  max ,V, -- #k'/'#k' > e~  = 0  (3.45) 
K---+o~ n---+o~ ( k* +K <~k <~flk* J 

for all c > 0. By condition C.4, for each 1 < fl < 7 < oo we can find C6 = C6(fl, y) < 0 
such that 

#k<<.C6k* if flk*<~k<~,k*. (3.46) 

Noting that 

#k = k*{H('r2) - H(xt  ) + Ht ( '~2 ) (TI  --  T2) T} 

k/k*~ 2 +~T)(~,- ~2)H"(~*)(~,- ~)T, 

we can choose for each large enough ? a constant C7 = C7(?) < 0 such that 

#k <...C7k* if  ?k* <~k < n. (3.47) 
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Putting together (3.46) and (3.47) we get 

I~k <~ Csk* if flk* ~ k  < n (3.48) 

with some constant Cs < 0. By the law of the iterated logarithm and the central limit 
theorem we have 

max k H ( Bk ) - H - - ~k* ~k<n T *1 + ~ ' 2 )  k*(H(Bk. ) H(* l )) 

+ (n -- k ) (H(g; )  - H(*2)) - (n - k*)(H(B;. ) - H(*2)) 

H , ( k *  k - k *  "~{ )T max ~ (T(X~) - . 1  ilk* <~k<n T *121 q- T .2 )  l<~i~k* 

Jr- Z (T(Xi ) - -*2)T}  - H ' ( * I )  Z (T(Xi)--*I)T 
k* <i<~k 1 <~i<<.k* 

~-H/(*2) Z ( T ( X i ) -  *2)T - Mr(g2) Z ( T ( X i ) -  g2)T Aw Oe(log log n) 
k<i<n k* <i<n 

l~k'<,k<,max(H'( k - k - k *  ) - k - * '  T .2 ) "E1)T -t- --Ht(*I) Z ( T ( X i ) -  
1 <~i<~k* 

max )  2,T +t~k*.<k<. T *1 + --g --.2 -H'(*2) ~ (r(X0-- 
k* <i<~k 

+ Op(log log n) 

= O p ( 1 )  max k - k *  k* k* l/k*~<k<n k v /~ -+Op(1 )  max - - ( k -  )l/2(loglogn)l/2 
,gk* <~k<n k 

+ Op(log log n) 

= o(k* ). (3.49) 

By (3.45), (3.48) and (3.49) we have 

lim l imsupP{  max IVk--]2k]/l#kl > C} = 0  
K---+oo n~oc k*+K<.k<n 

for all e > 0. Lemma 3.3 follows from (3.41) and (3.50). [] 

(3.5o) 

Lemma 3.4. I f  the conditions o f  Theorem 1.6 are satisfied, then 

621k - k* I = Op(1). 

Proof. The proof is a combination of the proofs of Lemmas 3.2 and 3.3 and therefore 
it is omitted. [~ 
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In Lemmas 3.1 and 3.3 we showed that the difference between k* and k is bounded. 
This shows that the distribution is determined by those values of Vk when k - k* is 
bounded. Next we consider the weak convergence of Vk*+k. 

Lemma 3.5. I f  the conditions of  Theorem 1.3 or 1.5 are satisfied, then for each 
positive integer N we have 

{ V k . + k , k : 0 , + l , + 2  . . . .  ,+N} ~> { Z , , k : O , + l , + 2  . . . .  ,4-N}, 

where Zk is defined in (1.11 ). 

Proof. Let 1 ~<k ~<k*. Taylor expansion gives 

m a x  [Vk - -]Ak --  Vk, I - -  Vk, 2 - -  Vk, 3 --  Vk,4l = O p ( n - 1 / 2 ) ,  (3.51) 
k* N<~k<~k* 

where 

Vk, 1 = Ht('~l) ~ (T(X/) -z l )  T -H'(zl) 
l ~i<~k 

Z ( T ( X i ) - Z l ) r '  
l <~i <~k* 

{ } { } v,,~ = ~ ~ (r(x,.)-,,) H"(,,) ~ (r(x,)-,,) 
1 <~i<~k 1 <~i<~k 

1 ( T ( X i ) - z l )  H"(zl )  ( T ( X i ) - * l )  , 
21c* 1 ~ i ~ k *  1 ~ i ~ k *  

{k* -k n-k* "~ 
v,.~ : s-s' !,.. _--=T*, + ; ; - -U2  ) 

~, k < i ~ k *  k* <i<~n 

-Ht('t2) Z ( T ( X i ) -  z2) v 
k* <i<~n 

and 

V k , 4  - - -  
2(n - k) 

~< (T(Xi)-~)+ 
k < i ~ k *  

{k* - k Z (r(x,.)-,2) w '  ~_~, 
k* <i~<n 

+~_~2) Z (T(X,)-,,)+ Z (T(X,)-,2) 
k<i<~k* k* <i<~n 

' {  } { } - 2 ( n - k * )  ~ (T (Xt ) -~2 )  H t ' ( ' [ 2 )  Z ( T ( X i ) - z 2 )  . 
k * < i ~ n  k*<i<~n 
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The central limit theorem yields that 

max tVk,2 ÷ Vk,4l = o/,(1) 
k * - N  <~k<~k* 

and 

(3.52) 

max IV k,l + Vk,3 - (H'('c2) - H'(~I )) Z (T(X/)  - "~1 )TI ---- op(1). (3.53) 
k*--N <~k <~k* k <i <~k* 

It is easy to see that 

max #k - (k* - k){H(~2) - H0rl  ) + H'(~z)(~I - xz)T} = o(1 ). (3.54) 
k * - N  <~k <~k* 

Putting together (3.51)-(3.54) we get 

max Vk-(H'(x2)-H'(lrl))  ~ (T(Xi)-~1) T 
k*-N<~k<~k* 

k<i<~k* 

+ (k* - k){H('cz) - H('Cl ) + H'('c2)('cl - "c2) T} = op(1). (3.55) 

Similar arguments give 

Vk - ( H t ( Z l ) -  Ht('c2)) Z (T(X/)-Ig2)T m a x  
k* <~k <.k* +N k* <i <~k 

+ (k* - k){H(~l ) - H(x2) + H'(lrl )(~2 - ~1 )T} = Op(1 ), (3.56) 

and therefore Lemma 3.5 follows from (3.55) and (3.56). [] 

Next we consider the problem of  Lemma 3.5 under the conditions o f  Theorems 1.4 

and 1.6. 

Lemma 3.6. I f  the conditions of Theorem 1.4 or 1.6 hold, then for each K > 0 we 
have 

{Vk.+t/62,-K~t~K } ~ {W (t),-K,~t<<,K}, 

where W* is defined in (1.19). 

Proof.  Using Taylor expansion, as in the proof o f  Lemma 3.6, with the applications 
of  the law of  the iterated logarithm and the central limit theorem one can show that 

max Vk-#k - (H ' (~2) -Ht (~ l ) )  ~ (T(Xi)-'~I) T ----oe(1).(3.57) 
k* --K/3 2 <~k <.k* 

k <i <~k* 
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Similarly, 

max V k - l A k - ( H t ( ' c l ) - H ' ( ~ 2 ) )  ~ ( T ( X i ) - ~ 2 )  T 
k* <~k <~k* +K/62 

k<i<~k* 

and elementary calculations yield 

sup [/~k.+t/62 - ½1tl(Xl - " [ 2 ) H t t ( ' c A ) ( ~ l  - ~ 2 ) T / b 2 [  = O(1). 
--K <~t<~K 

Now the weak convergence of partial sums of i.i.d, random 
result. [] 

Lemma 3.7. (i) I f  the conditions o f  Theorem 1.3 hold, then 

n-1/2{logAk.  -- p*} ~,  N(O,a~), 

where a 2 is defined in (1.1 3). 

(ii) I f  the conditions o f  Theorem 1.4 hold, then we have 

(n(~2)-l/2{logAk. -- p*} ~ N(0, a22), 

where a 2 is defined in (1.18). 
(iii) I f  the conditions o f  Theorem 1.5 hold, then we have 

(k*) - l /Z{ logAk .  - p*} ~ N(0, o -2) 

where a 2 is defined in (1.23). 
(iv) I f  the conditions o f  Theorem 1.6 hold, then we have 

(k*bZ)-l/Z{logAk* - ~t*} ~) N(O,a 2) 

where a 2 = aeA is defined in (1.17). 

Proof. First we note that 

log Ak. - #* = k*(H(Bk .  ) - H(Xl)) ÷ (n - k*)(H(B~.  ) - H(v2))  

= o p ( l ) ,  (3 .58)  

vectors gives the 

+nnk**2)) 
= H ' ( ~ I ) - H '  k* n )v 

+ n 
I <~i<~k* 

~"CI ÷ ~2 ( T ( X i )  - 'l~2)T 
n k* <i~n 

+Op(l). 

Hence the central limit theorem implies Lemma 3.7. [] 
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Proofs of Theorems 1.3-1.7. Lemmas 3.1 and 3.5 imply (1.14) and (1.16) follows 
from Lemmas 3.1, 3.5 and 3.7. Similarly, combining Lemmas 3.1-3.7 we get the proofs 
of Theorems 1.3-1.6. 

References 

Antoch, J., M. Hu~kovfi and N. Veraverbeke (1995). Change-point problem and bootstrap. ~L Nonparametric 
Statist. (to appear). 

Bhattacharya, P.K. (1987). Maximum likelihood estimation of a change-point in the distribution of 
independent random variables: general multiparameter case. J. Multivariate Anal. 23, 183-208. 

Bhattacharya, P.K. and P.J. Brockwell (1976). The minimum of an additive process with applications to 
signal estimation in storage theory. Z. Wahrschein. verw. Gebiete 37, 51-75. 

Cs6rg6, M. and L. Horvfith (1987). Nonparametric tests for the changepoint problem. J. Statist. Plann. 
Inference. 17, 1-9. 

Cs6rg6, M. and L. Horvfith (1988). Nonparametric methods for changepoint problems. In: P.R. Krishnaiah 
and C.R. Rao, Eds., Handbook of Statist&s, Vol. 7 Elsevier, Amsterdam, 403-425. 

Dfimbgen, L. (1991 ). The asymptotic behavior of some nonparametric change-point estimators. Ann. Statist. 
19, 1471-1495. 

Ferger, D. (1994a). Nonparametric detection of change points for sequentially observed data. Stochastic 
Process. Appl. 51, 359 372. 

Ferger, D. (1994b). On the power of nonparametric changepoint-tests. Metrika 41, 277-292. 
Ferger, D. (1994c). Change-point estimators in case of small disorders. J. Statist. Plann. InJerence 40, 

33-49. 
Ferger, D. (1994d). An extension of the Cs6rg~%HorvS.th functional limit theorem and its applications to 

changepoint problems. J. Multivariate Anal. 51, 338-351. 
Ferger, D. (1994e). On the rate of almost sure convergence of Dfimbgen's changepoint estimators. Statist. 

Probab. Lett. 19, 27 3t. 
Ferger, D. and W. Stute (1992). Convergence of changepoint estimators. Stochastic Process. Appl. 42, 

345-351. 
Gombay, E. and L. Horwith (1994). An application of the maximum likelihood test to the change-point 

problem. Stochastic Process. Appl. 50, 161-171. 
Haccou, P., M. Meelis and S. Van de Geer (1988). The likelihood ratio test for the change point problem 

for exponentially distributed random variables. Stochastic Process. Appl. 27, 121-139. 
Hinkley, D.V. (1970). Inference about the change-point in a sequence of random variables. Biometrika 57, 

1-17. 
Hinkley D.V. and E.A. Hinkley (1970). Inference about the change-point in a sequence of binomial variables. 

Biometrika 57, 477-488. 
Szyszkowicz, B. (1991a). Changepoint problems and contiguous alternatives. Statist. Probab. Lett. 11, 

299 308. 
Szyszkowicz, B. (1991b). Empirical type processes and contiguity. CRM Rep. Acad Sci. Canada 13, 

161 166. 
Szyszkowicz, B. (1991c). Weighted stochastic processes under contiguous alternatives. CRM Rep. Acad. 

Sci. Canada 13, 211-216. 
Yao, Y.-C. (1987). Approximating the distribution of the maximum likelihood estimate of the change-point 

in a sequence of independent random variables. Ann. Statist. 15, 1321-1328. 
Yao, Y.-C. and Davis, R.A. (1984). The asymptotic behavior of the likelihood ratio statistic for testing a 

shift in mean in a sequence of independent normal variates. Sankhyd Set. A 48, 339-353. 
Zacks, S. (1991). Detection and change-point problems. In: B.K. Gosh and P.K. Sen, eds., Handbook of 

Sequential Analysis, Marcel Dekker, New York, 531-562. 


